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The collective behavior of an ensemble of multimode stochastic oscillators is investigated. The oscillators
are pulse coupled; they are able to emit pulses and to detect the pulses emitted by the others. As a function of
the output intensity in the system they can operate in different modes having different pulsing periods. The
system is designed to optimize the output intensity around a fixed f� output threshold. In order to do so a
simple dynamics is considered. Whenever the total output intensity in the system is lower than f�, a mode with
a higher interpulse period is chosen. If the light intensity in the system is higher than f�, a mode with a lower
interpulse period is selected. As a side effect of this simple optimization rule, for a given f� interval a nontrivial
synchronization of the oscillators is observed. The synchronization level is studied by computer simulations,
investigating the influence of model parameters �number of modes, stochasticity of the oscillators, the f�

threshold value, and interaction topology�. An experimental realization of this system is also considered; an
ensemble of electronic oscillators communicating with light pulses was constructed and studied. The experi-
mental system behaves in many ways similar to the theoretically considered multimode stochastic oscillator
ensemble.
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I. INTRODUCTION: TRIVIAL VERSUS NONTRIVIAL
SYNCHRONIZATION

The spontaneous synchronization of coupled oscillators is
a well-known collective behavior. It appears without an ex-
ternal periodic driving, and it is the consequence of the in-
teractions between the units. A wide variety of natural and
social systems offers fascinating examples: pendulum clocks,
flashing fireflies, oscillating chemical reactions, menstrual
cycles of women living together, lightning activity in distant
storm cells, rhythmic applause, chirping crickets, pacemaker
cells in the heart, neurons, etc. For an extended review on
synchronization phenomena one can consult several review
works �1–3�. Physics developed successful models for under-
standing this widespread phenomenon. The used models can
be categorized by the relevant properties of the oscillators or
the nature of the coupling between them. In the present work
a different model category is studied. The oscillators are
multimode units and the coupling between them is realized
through a simple optimization dynamics.

Spontaneous synchronization of identical oscillators
coupled by phase-difference minimizing forces is a trivial
phenomenon. Since in such cases the interaction always
minimizes the phase difference between the units, the syn-
chronized state is a natural fix point of the dynamics. In such
cases the interesting aspect is the transient dynamics leading
to synchronization.

The problem becomes more interesting, and also more
realistic for applications to natural systems, if oscillators
with different natural frequencies are considered. In such
cases it is not obvious at all that synchronization can be
achieved in the thermodynamic limit �large number of oscil-
lators�, since the units are different and each of them would
like to impose its natural frequency. In general, for globally
coupled systems one obtains a second-order phase-transition

type behavior of the order parameter as a function of the
coupling strength. The order parameter in such cases is a
nondimensional quantity, characterizing the synchronization
level in the system. For interaction strengths less than a criti-
cal value, the system does not synchronize �disordered
phase�. For interaction values larger than the critical interac-
tion, partial synchronization emerges �ordered phase�. The
value of the critical coupling depends on how different the
natural frequencies of the oscillators are, i.e., it depends on
the standard deviation of the natural frequencies. For locally
coupled oscillators the problem is even more complex and
the existence of the synchronized phase depends largely on
the coupling topology. There are two main categories of
models which are widely used for describing the synchroni-
zation of nonidentical oscillators. One is for phase-coupled
oscillators �Kuramoto-type models� and the other one is for
pulse-coupled oscillators �integrate-and-fire-like models�.
The Kuramoto model �4� considers a large number �N ,N
→�� of coupled rotators. Their natural frequencies, �i, are
distributed according to a g��� probability density. Coupling
is considered uniform between the units, and the dynamics is
governed by the following set of coupled first-order differ-
ential equations:

�̇i = �i + K�
j=1

N

sin�� j − �i�, i = 1, . . . ,N , �1�

where K is the coupling constant and �i is the phase of unit
i. The complex order parameter of the system is defined as

rei� =
1

N
�
j=1

N

ei�j . �2�

� represents the collective phase of the synchronized state
and r� �0,1� is the scalar order parameter characterizing the
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synchronization level. The advantage of the chosen harmonic
form of the coupling is that the model can be solved analyti-
cally �4�. The model exhibits a second-order phase transition
as a function of the K coupling parameter. For K�Kc, the
system will not synchronize, and the stable solution is r=0.
For coupling above a Kc critical value, partial synchroniza-
tion of the rotators will appear �r�0�. For many natural
systems, however, considering the coupling phaselike is not
realistic, since the interaction between the units is pulselike
�fireflies, clapping, firing of neurons, etc.�. The integrate-
and-fire type models �5,6� are appropriate for such kind of
oscillators. The basic assumption is that again each oscillator
has a natural frequency ��i�, a phase ��i�, and a state vari-
able �or energy� E�i�. The phase and state variables are con-
nected through an F�x� monotonically increasing functional
relation. Once the phase of an oscillator reaches 2�, the os-
cillator emits a pulse and its phase is reset to 0. The effect of
this pulse on the other oscillators is that their state variable is
instantaneously increased �or decreased� by a K value. As a
result of the F�x� relationship the phases of the oscillators are
also increased. It is easy to realize that under some specific
conditions the pulse of one oscillator can trigger an ava-
lanche of pulses �firing�, leading finally to a phase synchro-
nization of the units. A proper order parameter characterizing
the synchronization level in the system can be defined as the
relative size of the largest avalanche �number of units firing
together divided by the total number of units�. Similarly to
the Kuramoto model, for globally coupled units and for a
wide variety of F�x� functions, there exists a critical Kc cou-
pling threshold. For K�Kc the system does not synchronize
�r=0� and for K�Kc partial synchronization emerges �r
�0�. For locally coupled units the topology of the interac-
tions is important and as a result of this, synchronization
might or might not appear. A widely used variant of this
model was elaborated for neurons �7,8�. The model assumes
that if the membrane potential reaches a threshold Vth, the
neuron will fire, this spike corresponds to the action poten-
tial. After firing, the membrane potential is reset to a V0
�Vth value. Once fired, the neuron needs some time to re-
cover before firing again. Here the slow collection and quick
release of the voltage is called integrate-and-fire behavior.
FitzHugh �8� and Nagumo et al. �9� derived the FitzHugh-
Nagumo equations �7� for such oscillators, which are also
able to describe spontaneous synchronization.

Although spontaneous synchronization of nonidentical os-
cillators coupled by phase difference minimizing interactions
is not obvious, the synchronization that will appear for large
coupling values is again trivial. The interaction is obviously
favoring synchronization, and one would naturally expect
this collective behavior to appear in the large coupling limit.
In layman’s terms one could say that the desire for synchro-
nization is directly built into the model.

A highly nontrivial model for synchronization was re-
cently introduced by Nikitin et al. �10,11� to offer a realistic
description of the fascinating dynamics of rhythmic applause
and synchronization in several other biological systems with
multiple oscillating modes. In this model there are no phase-
minimizing interactions that would naturally lead to synchro-
nization. Synchronization appears as an unexpected side ef-
fect of a simple optimization process. The oscillators are

realistic in many ways; their natural frequencies are different
and stochastically fluctuating in time, the oscillators can op-
erate in several modes with different natural frequencies. In
the present paper we investigate in detail this highly non-
trivial synchronization. We analyze the influence of the num-
ber of modes and the interaction topology on the synchroni-
zation level. A simple experimental realization was built and
the obtained collective behavior is compared to the results
predicted by the model.

II. TWO-MODE STOCHASTIC OSCILLATOR MODEL

The cycle of these oscillators is composed of three parts;
let us denote them as A, B, and C �10,11�. State A is the
stochastic part. The time interval spent in this part is a sto-
chastic variable, and its length is denoted by 	A. It can be
different for any two oscillators, and it can also be different
for the same oscillator in successive cycles. This property
makes the oscillators realistic, since in nature there are no
perfectly identical individuals, and the period of any oscilla-
tion fluctuates in time. We thus consider 	A as a stochastic
variable with probability density

P�	A� =
1

	�
e−�	A/	�� �3�

�	�= �	A��.
More precisely, state A should be imagined and modeled

with an escape dynamics of a stochastic field driven particle
from a potential well of depth U. If the stochastic force field
is totally uncorrelated, with �
�=0 and �
�t�
�t+	��t=D��	�,
we get the distribution of escape times given in Eq. �3� with
	��eU/D. In analogy with the well-known FitzHugh-Nagumo
system, state A corresponds to the stochastic recovery time
of a neuron. This causes all experimentally observed fluctua-
tions in rhythmic human activities.

State B represents a waiting time or the part where the
desired rhythm is imposed. The oscillators spend most of
their time in this state. In the two-mode version 	B, the time
interval spent in state B can take two possible values: 	BI

or
	BII

, and this leads to the two coexisting modes. We have
chosen 	BII

=2	BI
here. The qualitative results of the collec-

tive dynamics remain however unaffected by the chosen ratio
of 	BI

/	BII, assuming of course that this ratio is not one.
In state C the oscillator emits a pulse which is detected by

all the other units. The output �pulse� of oscillator i is con-
sidered thus to be f i=1 /N �N is the number of oscillators in
the system� if the oscillator is in state C, and f i=0 if the
oscillator is in state A or B.

The rules for the collective time evolution of the system
are simple and realistic ones. They are designed for keeping
an f� average output intensity: �1� each oscillator starts with
randomly selected phases and modes; �2� there is a fixed
�desired� output intensity, f�, for the system; �3� at each time
step the total output is monitored f =�i=1

N fi; �4� After finish-
ing state A each oscillator will choose to follow either mode
I or mode II. If at that moment f � f�, the oscillator will
operate in mode I increasing the total average output by
shortening the period. If f � f� the oscillator will follow
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mode II with a longer period, decreasing the total average
output. Since the intensity of the oscillator’s pulse is fixed,
this is the only possible way to influence the value of the
average output.

The above dynamics tries to keep the average output close
to f�. In Fig. 1 we illustrate this by plotting the simulated
time average of the systems global output, �f�, as a function
of f�. From Fig. 1 it results that the dynamics is not perfectly
efficient, since the desired �f�= f� dependence is approxi-
mated quite roughly.

As an unexpected side effect, for a broad f� and 	� inter-
val nontrivial spontaneous synchronization appears. Syn-
chronization in this case means that a large number of oscil-
lators will emit pulses at the same time. As a consequence of
this the total output signal f exhibits a periodic behavior. We
illustrate this phenomenon in Fig. 2. For the f� and 	� pa-
rameter values chosen in Fig. 2�a� the oscillators are working
synchronously since the total output intensity, f�t�, has a pe-
riodic pulsation. In contrast to this, for the f� and 	� param-
eters chosen in Fig. 2�b� there is no synchronization.

In order to characterize the synchronization level numeri-
cally, we use a simple measure that is appropriate for de-
scribing the periodicity level of the output �10,11�. Let us
denote the output signal as a function of time by f�t�. The

first step is to define an error function, 
�T�, which charac-
terizes quantitatively how strongly the f�t� signal differs
from any periodic signal with period T,


�T� =
1

2M
lim
x→�

1

x
�

0

x

	f�t� − f�t + T�	dt , �4�

where

M = lim
x→�

1

x
�

0

x

	f�t� − �f�t��	dt , �5�

�f�t�� = lim
x→�

1

x
�

0

x

f�t�dt . �6�

The general shape of the 
�T� curve is sketched in Fig. 3.
For any f�t� signal, the 
�T� function initially increases, after
that decreases, and reaches a minimum at Tm �we denote the
minimum as 
m�. Tm is the best approximation for the f�t�
signal’s period, and the p periodicity level of the signal is
characterized by

p =
1


m
. �7�

As discussed earlier, the p periodicity level is appropriate
for characterizing the synchronization level of the oscillators.
It has the advantage that it can be computed solely from the
f�t� global output. One can calculate the value of p for the
whole system and also for one single oscillator �p1� working
in the long period mode �where the effect of randomness on
the period is weaker�. The ratio p / p1 will then characterize
the enhancement in the periodicity due to the considered
coupling. This ratio will be used hereafter to characterize the
synchronization level of the oscillator ensemble.

In the previous numerical studies performed on this sys-
tem �10� it was shown that in the f�-	� phase space there is a
compact islandlike region where partial synchronization is
achieved �Fig. 4�. It was also shown that in the synchronized
regime the total output of the two-mode oscillator system is
more periodic than the output of one single unit in the long
period mode �i.e., p� p1�. Moreover, the previous studies
revealed that the periodicity level of the system �the value of
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FIG. 1. The average global output of the system as a function of
f�. The dotted line illustrates the desired trend. Two-mode oscilla-
tors with 	�=0.2 are considered and simulations with different num-
ber, N, of units are done.
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FIG. 2. The total output as a function of time for partially syn-
chronized �left� and unsynchronized �right� oscillators. The two
cases differ in the value of the f� parameter: for the partially syn-
chronized oscillators f�=0.10 and for the unsynchronized ones f�

=0.30. In both cases N=2000 oscillators were considered and 	�

=0.2 was chosen.
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p / p1� monotonically increases with the number of units in
the system �see for example Fig. 6�. This enhancement in the
periodicity level offers challenging perspectives for practical
applications.

The multimode stochastic oscillator model is realistic for
many social and biological entities �12–16�. As immediate
examples, one can mention the thalamocortycal relay neu-
rons, the unicellular alga Gonyaulax polyhedra, or the
American snowy cricket. In a previous study �11� it was also
shown that the two-mode stochastic oscillator model can be
successfully applied for describing the fascinating collective
social behavior in the rhythmic applause.

III. n-MODE STOCHASTIC OSCILLATOR MODEL

A natural question that one should answer is how the re-
sults are modified when there are more than two possible
oscillation modes for the units. Will the level of the obtained
synchronization increase or decrease in such cases? How will
the f�-	� parameter space region, in which synchronization is
present, modify when the number of modes is increasing?

In order to answer these questions, three-, five-, and nine-
mode stochastic oscillators will be considered. States A and
C will remain the same as in the two-mode case. We assume
that in the three-mode case there are three possible 	B values:
	BI

=0.4, 	BII
=0.6, and 	BIII

=0.8. In the five-mode case we
have chosen 	BI

=0.4, 	BII
=0.5, 	BIII

=0.6, 	BIV
=0.7, and 	BV

=0.8, and in the nine-mode case: 	BI
=0.4, 	BII

=0.45, 	BIII
=0.5, 	BIV

=0.55, 	BV
=0.6, 	BVI

=0.65, 	BVII
=0.7, 	BVIII

=0.75,
and 	BIX

=0.8.
The dynamical rules for the time evolution of the system

is similar to the ones considered for two-mode oscillators.
Let us denote the number of possible modes by M. After
finishing phase A, each oscillator has the possibility to re-
main either in its last operation mode or to choose a new
mode. Let us assume that in the previous cycle the oscillator
operated in mode k �k� 
1,2 , . . . ,M��, and at the end of

phase A, the total output intensity in the system is f . If f
� f� the oscillator will choose the mode k+1 with a higher
period in order to decrease the total output intensity �ap-
proach better the desired f� value�. If there is no mode with
a higher period �i.e., k=M�, the oscillator will remain in
mode M. In the case f � f� the oscillator will choose to work
in mode k−1 with a lower period, increasing by this the
average output intensity �for k=1 the oscillator will continue
to operate in mode 1�. For the case of the “n-mode” system
one can define other dynamical rules as well. A natural rule
would be to allow the units to jump on the available modes
in a less gradual manner. As a function of the difference
between f and f� the oscillator would choose a mode with a
more suitable period. Another possibility would be to allow
the oscillators to choose randomly one mode in the direction
imposed by f and f�. If f � f� a mode with a higher period
would be randomly selected, and for f � f� a mode with a
lower period would be randomly chosen. These are only few
examples on how the dynamical rules for the n-mode system
could be defined, and definitely all these systems are worth a
detailed study. In the present study we limit ourselves to the
first described steplike dynamics.

Computer simulations were used to investigate the collec-
tive behavior of these systems. The length of the C phase of
the cycle was fixed as 	C=0.1 units and the time step in the
simulation was taken to be 
t=0.01. The values of f� and 	�

were changed in uniform steps, and the previously intro-
duced p / p1 synchronization level was calculated for each
mesh point in the f�-	� parameter space. Initially 32 000
transient time steps are simulated to heat up the system. After
this additional 32 000 time steps were simulated for each
parameter value, and the value of p / p1 was computed from
this data.

In agreement with the previously obtained results �the
two-mode case �10��, in the f�-	� parameter space there is an
islandlike region where synchronization is present �Fig. 4�.
In Fig. 4 we illustrate with a grayscale code the value of the
p / p1 synchronization level. Lighter colors correspond to
stronger synchronization levels.

The figure suggests that as the number of modes in-
creases, the size of the island in the f�-	� parameter space
where partial synchronization is present will decrease. The
grayscale code also suggests that the more oscillating modes
we have, the weaker the synchronization will be.

Let us investigate now the distribution of the oscillating
modes chosen by the oscillators for different values of the f�

parameter �	�=0.2, N=2000�. Results are plotted in Fig. 5.
The height of the histograms presented in Fig. 5 is propor-
tional to the number of oscillators found to be working in a
given oscillating mode. For each case four f� values are con-
sidered in ascending order. For f�=0.03, the oscillators usu-
ally work in the long period mode and there is no synchro-
nization; for f�=0.08 and f�=0.15, the oscillators will switch
between the allowed modes and this is the interval where
partial synchronization arises; for f�=0.22 all oscillators
choose the short period mode which results in an unsynchro-
nized behavior. As expected, synchronization appears when
the coupling is efficient, and the oscillators continuously
shift between the allowed modes.

We focus now on the p / p1 synchronization level as a
function of the number of oscillators in the system, N �Fig.

0.05 0.1 0.15 0.2

0.2

0.4

0.6

2−mode

f*

τ*

0.05 0.1 0.15 0.2

0.2

0.4

0.6

3−mode

f*

τ*

0.05 0.1 0.15 0.2

0.2

0.4

0.6

f*

5−mode

τ*

0.05 0.1 0.15 0.2

0.2

0.4

0.6
9−mode

f*

τ*

0

5

10

0

5

10

0

5

10

0

5

10

FIG. 4. Synchronization level in the system as a function of the
f� and 	� parameters. Grayscale code, where lighter colors corre-
spond to higher synchronization levels. The collective dynamics of
N=2000 oscillators are simulated.
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6�. The f� and 	� parameters are fixed in such a way that
partial synchronization is present. Independently of the num-
ber of considered modes, the synchronization level is mono-
tonically increasing as a function of the number of oscillators
in the system. Again, it can be observed that by increasing
the number of possible modes the synchronization level de-
creases.

For a fixed number of oscillators and a fixed 	� value,
synchronization appears and disappears abruptly as a func-
tion of f�, resembling a phase-transition phenomenon. Figure
7 illustrates this sharp variation, which becomes even sharper
when more oscillators are present in the system. In agree-
ment with the results sketched in Fig. 4, the synchronization
level and the f� interval, where the oscillators are synchro-
nized, both decrease when the number of oscillating modes
is increased.

It is also worth studying what the best approximation for
the Tm period of the global signal will be. Independently of
the 	� and f� parameter values in the partially synchronized
regime, its value was always around 0.9 units. This corre-
sponds to the period of the mode with the largest 	B value.
There are however some f� and 	� values for which the 
�T�
function has a deep minimum also around 0.3 or 0.45 time
units. The global minimum remains, however, always at 0.9
time units.

IV. LOCAL COUPLING

In many statistical physics models �such as the Kuramoto
model�, the dimensionality of the system and the topology of
the interaction network are crucial. Let us investigate here
what will happen with our multimode stochastic oscillator
system if local coupling is considered instead of a global
one. This means that each oscillator i detects only the pulses
emitted by some of its neighbors, and we will compare the
fixed f� value with the local f 
i� output given by these. The
dynamics of the system is similar to the previous cases, the
only difference is that optimization is done locally. Simula-
tions were considered for two-mode oscillators with 	�=0.1
fixed. The main difference in the dynamics relative to the
globally coupled case is that the strength of the pulse emitted
by each oscillator is 1 /S �and not 1 /N as in the globally
coupled case�, where S denotes the number of interacting
neighbors. This modification is necessary in order to com-
pare the results for different interaction radii and different
number of units, and also for getting the same average inter-
action strength in the thermodynamic limit.

Partial synchronization of the oscillator ensemble appears
already in a one-dimensional �1D� chain. For a one-
dimensional system one does not expect an order-disorder
type phase transition in equilibrium systems. The system in-
vestigated here is however a typical nonequilibrium one,
where the order arises as a result of the specific dynamical
rules and not as a result of the competition between thermal
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FIG. 5. Distribution of the followed oscillating modes for dif-
ferent values of f� and different numbers of possible modes. Simu-
lations are for systems with N=2000 and 	�=0.2. Partial synchro-
nization appears when all modes are active and the oscillators
continuously switch between them.
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fluctuations and an ordering interaction. Results for different
interaction radii, S, and different chain lengths, N, are pre-
sented in Fig. 8.

The results indicate that partial synchronization appears in
a given f� interval for all S�4 cases. Figure 8 also suggests
a discontinuous steplike variation in p / p1 as a function of f�.
The number of clearly distinguishable steps is roughly S /2.
The synchronization level is clearly increasing with S, but it
saturates quickly as a function of the number of units, N.

For oscillators placed on square lattice, the results are
similar �Fig. 9�. Again, a steplike variation for p / p1 is ob-
tained as a function of f�. There is however an important
difference relative to the 1D case; in the partially synchro-
nized regime p / p1 increases monotonically with the size of
the system �N�, resembling in this sense the globally coupled
case. By comparing the results for the 1D and two-

dimensional �2D� topologies �Fig. 10�, this difference is evi-
dent. In the simulations leading to the results plotted in Fig.
10 each unit is interacting with S=24 nearest neighbors, and
different system sizes, N, are considered. One will observe
that both for the 1D and 2D topologies synchronization ap-
pears in the same f� interval, the characteristic steps are at
the same f� values, but finite-size effects are qualitatively
different.

We conclude thus that similarly to the globally coupled
systems, in the locally coupled case partial synchronization
is also possible if the number of interacting neighbors is big
enough. Interestingly, and in contrast to the globally coupled
system, the p / p1 order parameter varies as a function of f� in
a steplike manner. As expected, the results plotted in Figs. 8
and 9 indicate that as the dimensionality and the number of
interacting neighbors is increasing, the results are getting
qualitatively similar to the ones obtained for globally
coupled systems.

V. LOCALLY VARIABLE THRESHOLDS

A practically relevant objection against the discussed mul-
timode stochastic oscillator model concerns the considered
uniform nature of f�. For a real system, the f� threshold
parameter could be slightly different for the units and could
also fluctuate in time. A question that naturally arises is
whether synchronization is still possible under such circum-
stances.

To answer this question, the two-mode globally coupled
system was investigated by computer simulations. First a
quenched uniform distribution was considered, assigning
random f i

�� �f0
�−� , f0

�+�� local thresholds to each oscillator,
i. The dynamics of the oscillators was the same as for the
globally coupled system in Sec II. Results for the p / p1 order
parameter as a function of f0

� and for various amounts of the
disorder are plotted in Fig. 11�a�. The results presented in
this figure are for 	�=0.2 and the level of disorder is indi-
cated by the d=� / f0

� ratio.
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FIG. 8. Synchronization level as a function of f�. Results for a
1D chain. �a� Different curves are results for different number of
interacting neighbors �S�, as indicated in the legend. �b� Curves are
for two different values of S and different number of oscillators as
indicated in the legend. 	�=0.1 for all cases.
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Simulation results suggest that a small amount of
quenched disorder will not alter the observed collective be-
havior significantly. Our simulation results also revealed that
for d�15% fluctuations, the collective behavior becomes
much more complicated, and the simple order-disorder type
transitions disappear.

Results for the case when the f i
� values have timelike

fluctuations are similar. One can choose again the f� values
with a uniform distribution in the f i

�� �f0
�−� , f0

�+�� interval
and investigate the synchronization level as a function of f0

�

by simulations. Results are plotted in Fig. 11�b�. Similarly to
the case of quenched disorder, up to a d�15% disorder
level, the synchronization properties are practically un-
changed. For a higher disorder level, a more complex collec-
tive behavior is observable, and the clear order-disorder tran-
sitions will disappear.

VI. EXPERIMENTAL REALIZATION
OF THE TWO-MODE SYSTEM

The highly nontrivial collective behavior of the previ-
ously described oscillator system challenged an experimental
realization. Electronic oscillators capable of emitting and de-
tecting light pulses were built �Fig. 12�. Similarly to the
theoretically studied system, these oscillators can have sev-
eral oscillating modes, and their dynamics is similar to the
considered oscillators in Secs. II and III.

The oscillators were developed around an 8 bit reduced
instruction set computer �RISC�-core microcontroller from
Atmel. Figure 12�a� shows the main elements: the microcon-
troller, the photoresistor, and the light-emitting diode �LED�
is clearly visible. The circuit diagram of the oscillator is
given in Fig. 13. To ensure a natural behavior, the internal
RC oscillator of the microcontroller was chosen as time ref-
erence. The light intensity in the system is measured by a
photoresistor in conjunction with three normal resistors of
10 K�, 100 K�, and 1 M�, which enables several sensi-
tivity ranges. It is also possible to setup a low pass filter
�LPF� on the photoresistor signal by choosing one of the two
10 or 100 nF capacitors on the INT0 and INT1 pins. The
reference signal U �which corresponds to the value of f� in
the model� applied to the oscillators and the voltage on the
photoresistor �which depends on the selected f�t� light inten-
sity� can either be measured by a 10 bit resolution analogic-

digital converter �ADC� or compared by a built-in hardware
comparator. The output of the oscillator appears on the LED.
A hardware pulse width modulation �PWM� can be used to
alter this light intensity. The main advantage of this system is
the software-oriented flexibility. The parameters are fixed
and the hardware is setup by the program in the microcon-
troller. The stochasticity of the period is naturally satisfied
due to the analog nature of the internal RC oscillator.

The oscillators were programmed for reproducing the col-
lective dynamics of the two-mode system experimentally.
The parameters of the modes were chosen in agreement with
the values considered in the simulations. The oscillators are
placed on a circuit board �Fig. 12�b��, which is closed inside
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FIG. 11. The p / p1 synchronization level as a function of f0
�.

Figure 11�a� is for quenched disorder, and Fig. 11�b� is for f� values
fluctuating in time. Different curves are for different disorder level,
characterized by the d=� / f0

� ratio. For all curves 	�=0.2 and the
number of oscillators are N=2000.

FIG. 12. �a� Picture of the considered electronic oscillators and
�b� an ensemble composed by 24 oscillators placed on a circuit
board.

FIG. 13. Circuit diagram of an oscillator.
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a box to isolate the system from external light. In principle,
each oscillator feels the light pulse emitted by the others.
This is realized by placing a dispersive mirror on the top
inside wall of the box. In this setup, the coupling between the
oscillators is quasiglobal since the oscillators will detect the
pulse emitted by the others with different intensity depending
on their relative position on the circuit board. Through a
simple interface, the circuit board is connected to a personal
computer �PC�. This interface allows the user to follow in
time the state of each oscillator and to fix the relevant physi-
cal parameters and change them automatically in time. At the
beginning of the experiment two reference signal values, the
lowest �Umin� and the highest value �Umax�, the 
U step and
the tm total measuring time for each reference value are set.
The driver program running on the PC will then do the ex-
periments automatically for all specified U reference values
and will save the state of the system with a 10 �s time
resolution.

From the saved data one can easily compute the value of
the p parameter �Eq. �7��, which characterizes the periodicity
level of the global signal. This p value will be taken as the
experimental order parameter for the synchronization level in
the system. Experiments with N=15, 18, and 24 oscillators
were performed. One can realize, already visually, that for a
given U reference voltage interval this experimental setup
reproduces the desired collective synchronization of the light
pulses. Movies are shown in �17�.

In Fig. 14 the value of p is plotted as a function of the U
reference voltage. The shape of these curves is in agreement
with the theoretical results plotted in Fig. 7; synchronization
emerges only for a given interval of the U reference voltage
value. On the other hand there is also an important disagree-
ment. In all our simulation results, synchronization is en-
hanced by increasing the number of units. This observation is
valid for both global and local coupling, and it is also valid
for the case when the f� values are fluctuating in time or
space. Contrary to this, in the experimental realization it is
found that by increasing the number of oscillators, the p
periodicity of the global signal �or the level of synchroniza-

tion in the system� decreases. This means that the collective
dynamics in this electronic setup is different from the one
observed in the model. A possible source for this difference
is that in simulations all the elements are with linear charac-
teristics, there are no reaction times or delays in the oscillator
units. The output intensity of the units is steplike, the char-
acteristic curve of the detecting device is linear, the signal
travels with infinite velocity, and it is instantaneously de-
tected. However, this is not true for the electronic system,
where there are nonlinear characteristics for the LED and the
photoresistor and time delays due to the finite reaction time
of the active elements.

VII. CONCLUSIONS

Pulse emitting stochastic oscillators with several oscillat-
ing modes and with a simple optimization dynamics were
investigated. In each cycle the oscillators are able to modify
their oscillating mode �or oscillation period�. This is done in
order to optimize the intensity of the system’s global output
around a desired f� threshold. As an unexpected secondary
effect, nontrivial collective behavior appears in the system.
This collective behavior is characterized by a periodic varia-
tion in the global output intensity and synchronous pulsing of
the units. We called this behavior synchronization. It is hard
to decide, however, if this self-organization is synchroniza-
tion in a strict mathematical sense. To do this, one would first
need to rigorously generalize the concept of synchronization
to multimode oscillator units, which has not been done up to
the present. Being aware of this, we use the term nontrivial
spontaneous synchronization to characterize the obtained
self-organization. The nontrivial adjective has thus a double
meaning here. First it suggests that the observed collective
behavior might not be a synchronization in a mathematically
rigorous sense, and second it indicates that there is no obvi-
ous phase-minimizing force between the units.

The present study revealed that the observed nontrivial
synchronization appears only for a given f� threshold inter-
val. The appearance and disappearance of the order �charac-
terizing the synchronization level� as a function of f� re-
semble an order-disorder type phase transition.

In this paper, this simple model was investigated consid-
ering several important aspects. First, a multimode generali-
zation was studied. It has been shown that synchronization is
not enhanced by increasing the number of modes. The syn-
chronization is strongest in the two-mode version. In addi-
tion to this, the f� parameter interval where synchronization
is present becomes smaller as the number of possible modes
is increased. For a system that contains continuous modes
�infinite number of modes�, synchronization is seemingly not
possible at all. Synchronization is linked to the simple obser-
vation that the desired output intensity cannot be achieved in
a stable manner with a discrete number of modes. Indepen-
dently of the number of modes, the synchronization level
was always enhanced by increasing the number of oscillators
in the system.

As a second aspect, local versus global coupling was in-
vestigated. We learned that synchronization can appear even
for a one-dimensional chain, assuming that the units interact
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FIG. 14. Synchronization level, p, of the electronic oscillators as
a function of the U reference voltage for different oscillator
numbers.
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with a sufficiently large number of neighbors. In the synchro-
nized regime an interesting steplike variation in the synchro-
nization level as a function of f� is observed. It was found
that whenever the dimensionality of the system is greater
than one, the synchronization level is always enhanced by
increasing the number of units.

Finally, the influence of locally varying or fluctuating f�

thresholds was investigated. It was found that for a not too
high level of quenched disorder or timelike fluctuations in
the f� values, partial synchronization is still possible. The
same type of order-disorder transitions are obtained as in the
cases with a uniform value of the f� threshold parameter.

A simple electronic realization of the two-mode oscillator
system was also considered. Skeptics could visually con-
vince themselves that this nontrivial synchronization is real.
A detailed experimental investigation of the system shows
that just like in the theoretical model, synchronization is
present only for a given range of f� values. However, con-
trary to the results obtained on the theoretical model, in the
experimental system the synchronization becomes worst
when the number of oscillators is increased. This contradic-
tory result shows that the simple electronic realization is still
different from the original two-mode oscillator model.

Besides the nontrivial nature of this model, the investi-
gated system can be useful for describing several real sys-
tems. An immediate example is the fascinating social collec-
tive behavior in the rhythmic applause. As discussed in �11�,
all the experimentally observed aspects of rhythmic applause
can be described by using the simple two-mode stochastic
oscillator model. The interesting observation that the period-
icity of the collective behavior is better than the periodicity
of a simple unit can lead to several important practical ap-
plications as well. We consider thus that the present model
can be of interest to a broad scientific community working in
various research fields and can open a useful scientific dis-
cussion on nontrivial synchronizations in complex systems.
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